Nanoscale Motion Control With a Compact Minimum-Actuator Magnetic Levitator
نویسندگان
چکیده
This paper presents a novel magnetically levitated (maglev) stage developed to meet the ever-increasing precise positioning requirements in nanotechnology. This magnetic levitator has 6 independent linear actuators necessary and sufficient to generate all 6-degree-of-freedom (6-DOF) motions. This minimum-actuator design concept led to a compact, 200 g lightweight moving part and the power consumption less than of a Watt, thereby reducing the thermal-expansion error drastically. The analysis and sizing of the magnetic linear actuators and the working principle of the maglev stage are presented. We designed and implemented stabilizing controllers for 6-DOF motion control with the dynamic model based on the actuator analysis. Test results showed nanoscale step responses in all six axes with 2 nm rms horizontal position noise. A noise propagation model and analysis identified the capacitance sensor noise and the floor vibration as the dominant noise sources in the vertical and horizontal dynamics, respectively. A comparison of noise performances with controllers closed at 25, 65, and 90 Hz crossover frequencies illustrated how the selection of the control bandwidth should be made for nanopositioning. Experimental results including a 250 m step response, sinusoidal and square-wave trajectories, and spherical motion generation demonstrated the threedimensional (3D) nanoscale motion-control capability of this minimum-actuator magnetic levitator. Potential applications of this maglev stage include manufacture of nanoscale structures, atomic-level manipulation, assembly and packaging of microparts, vibration isolation for delicate instruments, and seismic motion detection. DOI: 10.1115/1.1978906
منابع مشابه
Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems
This paper presents two novel six-axis magnetic-levitation (maglev) stages capable of nanoscale positioning. These stages have very simple and ompact structures, which is advantageous to meet the demanding positioning requirements of next-generation nanomanipulation and nanomanuacturing. Six-axis motion generation is accomplished by the minimum number of actuators and sensors. The first-generat...
متن کاملCOMPARISON BETWEEN MINIMUM AND NEAR MINIMUM TIME OPTIMAL CONTROL OF A FLEXIBLE SLEWING SPACECRAFT
In this paper, a minimum and near-minimum time optimal control laws are developed and compared for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The control commands are considered as typical bang-bang with multiple symmetrical switches, the time optimal control solution for the rigid-body mode is obtained as a bang-bang function and app...
متن کاملModeling and Vector Control of Planar Magnetic Levitator
We designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom mo...
متن کاملCoarse-fine residual gravity cancellation system with magnetic levitation
This paper describes a six degrees-of-freedom active experiment isolation system designed to cancel out residual accelerations during "zero-g" parabolic ights (e.g., NASA KC-135 ights). The isolation system consists of a ne-motion magnetic levitator whose stator is transported by a conventional coarse-motion stage or by a robot. The levitator uses wide-gap voicecoil actuators and has the dual p...
متن کاملBuckling Analysis of FG Plate with Smart Sensor/Actuator
In this paper, the active buckling control of smart functionally graded (FG) plates using piezoelectric sensor/actuator patches is studied. A simply supported FG rectangular plate which is bonded with piezoelectric rectangular patches on the top and/or the bottom surface(s) as actuators/sensors is considered. When a constant electric charge is imposed, the governing differential equations of mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005